a2 United States Patent

Lu et al.

US009419793B2

US 9,419,793 B2
Aug. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)
(86)

87

(65)

(30)

Dec. 23, 2011

(1)

(52)

(58)

METHOD FOR GENERATING LARGE PRIME
NUMBER IN EMBEDDED SYSTEM

Applicant: Feitian Technologies Co., Ltd., Beijing
(CN)

Inventors: Zhou Lu, Beijing (CN); Huazhang Yu,

Beijing (CN)

Assignee: Feitian Technologies Co., Ltd., Beijing

(CN)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 227 days.

Appl. No.: 14/237,363

PCT Filed: Sep. 25,2012

PCT No.:

§ 371 (o)),
(2) Date:

PCT/CN2012/081901

Feb. 6,2014

PCT Pub. No.: WO02013/091416
PCT Pub. Date: Jun. 27,2013

Prior Publication Data
US 2014/0185799 Al Jul. 3, 2014

Foreign Application Priority Data
(CN) e 2011 1 0439890

Int. CI.
GOGF 7/58
HO4L 9/08
GOGF 7/72
USS. CL
CPC oo HO4L 9/0819 (2013.01); GOGF 7/72
(2013.01)

(2006.01)
(2006.01)
(2006.01)

Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,718,536 B2* 4/2004 Dupaquis GO6F 7/72

380/30
7,120,248 B2* 10/2006 Hopkins GO6F 7/72
380/30

(Continued)

FOREIGN PATENT DOCUMENTS

CN 102279840 A
CN 102591618 A
EP 1465366 Al
Primary Examiner — David H Malzahn

(74) Attorney, Agent, or Firm — Hammer & Associates, P.C.

12/2011
7/2012
10/2004

&7

A method for generating a large prime number in an embed-
ded system, comprising: (1) setting all identifiers in an iden-
tifier group in a first storage area; generating and storing a
random number with preset bit length in a third storage area;
modulizing the data in the third storage area by using the data
stored in the storage unit of a second storage area as a modu-
lus; determining the serial number of the identifier to be reset
in the identifier group according to the modulized value and
the data in the storage unit corresponding to the modulized
value; and resetting the identifier corresponding to the serial
number; (2) judging whether a set identifier exists in the
identifier group, if yes, then executing step (3); otherwise,
returning to step (1); and (3), determining a number to be
detected according to the random number and the serial num-
ber of the set identifier in the identifier group; detecting the
primality of the number to be detected; if the number to be
detected passes the primality detection, then outputting the
number to be detected; and if the numbers to be detected
corresponding to all the set identifiers in the identifier group
fail to pass the primality detection, then returning to step (1).
The present method has high efficiency and is suitable for an
embedded system.

ABSTRACT

5 Claims, 3 Drawing Sheets

st
Reset all identifiers in an identifier group with predetermined size

length

Generate a random number with predetermined bit

s2

Process the identifier group according to the random number and a
pradetermined small prime number table

54
Generate a group of numbers to be tested according to the /
random number and the identifier group and perform primality

test on the numbers

US 9,419,793 B2

Page 2
(56) References Cited 2013/0182839 Al* 7/2013 Vuillaume GOGF 7/582
380/44
U.S. PATENT DOCUMENTS 2014/0185799 Al* 7/2014 Lu ..cccovvviininn HO4L 9/0819
2002/0176573 Al* 11/2002 Futaccccoovvvviiininnne GOGF 7/72 380/46
380/44

2003/0235299 Al 12/2003 Dupaquis * cited by examiner

U.S. Patent Aug. 16, 2016 Sheet 1 of 3

US 9,419,793 B2

Reset all identifiers in an identifier group with predetermined size

/)

Generate a random number with predetermined bit
length

S2

Process the identifier group according to the random number and a
predetermined small prime number table

Generate a group of numbers to be tested according to the
random number and the identifier group and perform primality
test on the numbers

Fig. 1

U.S. Patent

Aug. 16, 2016 Sheet 2 of 3

US 9,419,793 B2

/ 101

A computer sets value of each data unit in a first
storage area to be valid value

l¢

The Computer generates a random number
with predetermined bit length, stores the
random number in a third storage area and sets
the teast significant bit of the random number to

beI 1

akes clentdaterimasecond—
storage area as a modulus, performs modulus
operation on the data in a third storage area to

/ 102

103

104 obtain current modulus value and stores the
in.a fourth storage area. |
The current modulus value The current modulus value
is an odd is a non-zero even 105
The computer computes difference of current data of The /
the second storage area and the data of the fourth arrent | The computer computes the difference of the current
storage area and divide the difference by 2 to obtain a || modulus | data in the second storage area and the result of divide
result and replaces the data in the fourth storage area || valie | the data in the fourth storage area by 2 and replaces
with th/eh result. is0. | the data in the fourth storage area with the difference.
| I
4 106

The computer sets the valid values in corresponding
data units of the first storage area to be invalid values.

107

Y The cempUter determines
- daTt:ILengzt: (?lzrtrheitn :::a next data unit exists in the second
' storage area.
N
108

Take the next data unit
as the current data unit, |~

Demmm

current data unit in the first storage
area is valid?

Y

The computer computes sum of twice of the 169

sequence number value of the current data
unit and the data in the third storage area and
performs primality test on the sum.

110

computer determines whethe
m passes the primality test?

The computer takes the sum which passes
primality test as a large prime for output and the
process in ended.

r

112
Y computer determi
[whether a next data unit exists in the

first storage area

Fig. 2

U.S. Patent Aug. 16,2016

Sheet 3 of 3

201

~

CPU sets a first data storage area in memory area,
sets value of each data unit in the first data storage
area to be valid and stores numbers of the data
units in a second data storage area.

US 9,419,793 B2

lk

The CPU initializes a first variable i in a first
variable storage area,

7 202

N
v

The CPU takes the ith data in a fourth data storage 203
area as modutus, performs modulus operation on
the data in a third data storage area to obtain a
current modulus value and stores the modulus
value in a fourth variable storage area,

l Ve 204

The CPU detects data in the fourth variable
storage area.

l 7 %5

The CPU initializes a second variable j in a second
variable storage area.

[

206

& CPU detects valug
the jth data unit in the first data storage
area to be valid.

207

The CPU sets the value of the jth data unit

in the first data s(oraFe area to be invalid.

208
The CPU updates the value of the second f
variable j in the second variable storage
area.

second data storage are;

210

The CPU updates the value of the jth variable in
the first variable storage area.

211

determines whether
variable i is more than the data in the fifth
dala storage area,

/ 212

The CPU initializes a third variable k in the third
variable storage area.

/T,heepmm

value of the kth data unit in the first

213

216
\ The CPU computes the sum of the value Of
the data in the third data Storage Area And the
twice of the third variable k in the third variable
storage area and stores the surn in the fifth
variable storage area.

217

determines whether
the fifth variable storage area can pass
primality test

218 Y

The CPU outputs the data in the fifth variable
storage area

ata storage is vali

214

The CPU updates the value of the third variable
kin the third variable storage area.

Step 213

Fig. 3

Update the data in
the third data
storage area

US 9,419,793 B2

1
METHOD FOR GENERATING LARGE PRIME
NUMBER IN EMBEDDED SYSTEM

TECHNICAL FIELD

The present invention relates to cryptography field, and in
particular relates to a method for generating a large prime
number in an embedded system.

PRIOR ART

In a password implementation process, especially in pro-
cess of implementing public key cryptography, an embedded
system is required to generate a large prime number for
encryption process, etc. to use. For example, key parameters
of the RSA encryption process require to use large prime
numbers generated by the embedded system.

In the prior art, generating a large prime number includes
generating a random number with sufficient length; determin-
ing whether the random number is a prime number; if the
random number is not a prime number, regenerating a group
of new random numbers or transforming the current random
number moderately; then determining whether the new ran-
dom number is a prime number one more time till a random
number which meets requirement is generated.

In above process of generating a large prime number, the
present inventors have found at least the following shortcom-
ings in the prior art: in process of generating a large prime
number, the primality test on a lot of random numbers is
required to determine whether a random number is a prime
number. Because the primality test needs modular exponen-
tiation which consumes much time and the probability of
successful passing the primality test is not high at all; in most
cases, a large prime number can only be obtained by search-
ing random numbers for hundreds, even thousands of times,
which is not suitably applied in an embedded system.

SUMMARY OF THE INVENTION

The object of the present invention is to provide a method
for generating a large prime number in an embedded system,
which improves probability of successful passing the primal-
ity test so as to improve the efficiency of generating a prime
number.

Thus, the present invention provides a method for gener-
ating a large prime number in an embedded system, which is
used in a system comprising a first storage area and a second
storage area, wherein the first storage area stores an identifier
group with predetermined size, sequence numbers of the
identifiers in the identifier group are consecutive integers
including 0 and different identifiers are different in sequence
numbers, and the second storage area comprises a plurality of
storage units and the different storage units store different
prime numbers, said method comprising steps of

(1) resetting all identifiers in the identifier group stored in

the first storage area; generating a random number with
predetermined bit length and storing the random number
in a third storage area, taking the data of the storage unit
in the second storage area as modulus to perform modu-
lus operation on the data (i.e. modulizing the data) stored
in the third storage area to obtain a modulus value (or
called modulized value); according to the modulus value
and the data stored in the storage unit corresponding to
the modulus value, determining sequence number of the
identifier which requires to be reset in the identifier
group and resetting the identifier corresponding to the
sequence number;

10

15

20

25

30

35

40

45

60

65

2

(2) determining whether a reset identifier exists in the
identifier group, if yes, go to Step (3); if no, go back to
Step (1);

(3) determining a number to be tested according to the
random number and the sequence number of the reset
identifier in the identifier group and performing primal-
ity test on the number to be tested; if the number to be
tested passes the primality test, outputting the number to
be tested as a large prime number; if numbers to be tested
corresponding to all the reset identifiers in the identifier
group do not pass the primality test, go back to Step (1).

Preferably, according to the modulus value and the data
stored in the storage unit corresponding to the modulus value,
determining the sequence number of the identifier which
requires to be reset in the identifier group specifically com-
prises

when the modulus value is 0, taking sum of the modulus
value and integer times of data stored in the storage unit
corresponding to the modulus value as the sequence
number of the identifier to be reset;

when the modulus value is an odd, obtaining difference of
the data stored in the storage unit corresponding to the
modulus value and the modulus value, obtaining a result
by dividing the difference by 2 and taking the result as
the sequence number of the identifier to be reset; and

when the modulus value is a non-zero even, obtaining a
quotient by dividing the current modulus value by 2 and
taking the difference of the current prime number and
the quotient as the sequence number of the identifier to
be reset; and

determining a number to be tested according to the random
number and the sequence number of the reset identifier
in the identifier group specifically comprises

taking result of sum of twice of the sequence number of the
reset identifier and the random number as the number to
be tested.

Preferably, according to the modulus value and the data
stored in the storage unit corresponding to the modulus value,
determining the sequence number of the identifier which
requires to be reset in the identifier group specifically com-
prises

when the modulus value is 0, taking sum of the modulus
value and integer times of the data stored in the storage
unit corresponding to the modulus value as the sequence
number of the identifier which requires to be reset;

when the modulus value is an odd, obtaining sum of the
data stored in the storage unit corresponding to the
modulus value and the modulus value, obtaining a quo-
tient by dividing the difference by 2 and taking the
quotient as the sequence number of the identifier to be
reset; and

when the modulus value is a non-zero even, taking a quo-
tient of dividing the modulus value by 2 as the sequence
number of the identifier which requires to be reset; and

determining a number to be tested according to the random
number and the sequence number of the reset identifier
in the identifier group specifically comprises

taking difference of the random number and twice of the
sequence number of the identifier to be reset as the
number to be tested.

Preferably, generating the random number with a predeter-

mined bit length comprises

generating a binary number with a predetermined bit
length;

determining whether the least significant bit (or called the
last significant bit) of the binary number is 1, if the least
significant bit of the binary number is 1, taking the

US 9,419,793 B2

3

binary number as the random number; if the least sig-
nificant bit of the binary number is not 1, setting the least
significant bit of the binary number to be 1 and taking the
binary number as the random number.

Preferably, generating the random number with predeter-
mined bit length comprises

generating a binary number with a predetermined bit

length;

determining whether the most significant bit (or called the

first significant bit) of the binary number is 1, if the most
significant bit of the binary number is 1, taking the
binary number as the random number; if the most sig-
nificant bit of the binary number is not 1, setting the most
significant bit of the binary number to be 1 and taking the
binary number as the random number.

The advantages of the present invention include providing
amethod of generating a large prime number in the embedded
system, which screens data required to be tested by using a
small prime number before a primality test. The method
improves probability of passing the primality test so as to
improve efficiency of generating large prime numbers.

BRIEF DESCRIPTION OF THE
ACCOMPANYING DRAWINGS

FIG. 1 is a flow chart of a method for generating a large
prime number in an embedded system provided by Embodi-
ment 1 of the present invention;

FIG. 2 is a flow chart of a method for generating a large
prime number in an embedded system provided by Embodi-
ment 2 of the present invention; and

FIG. 3 is aflow chart of method for generating a large prime
number by CPU provided by Embodiment 3 of the present
invention.

DETAILED DESCRIPTION OF THE PRESENT
INVENTION

The technical solutions of the embodiments of the disclo-
sure are described in a clear and complete manner in associa-
tion with the accompanying drawings as follows. Apparently,
the described embodiments are merely a part of, rather than,
all embodiments of the disclosure. Based on the described
embodiments of the disclosure, other embodiments obtained
by those skilled in the art without conducting inventive work
should fall into the scope of the disclosure.

EMBODIMENT 1

Shown as FIG. 1, in order to improve probability of suc-
cessful passing the primality test and thus improving the
efficiency of generating a large prime, Embodiment 1 pro-
vides a method for generating a large prime number in an
embedded system, which specifically includes following
steps:

Step S1, set all identifiers in an identifier group with a
predetermined size;

Specifically, in Embodiment 1, the predetermined size is
768; the identifier group contains 768 identifiers. In addition,
the other size can be applied as well. For convenience of
description, the identifiers are marked as the 07 identifier, the
1° identifier, . . ., the 766 identifier and the 767% identifier;

Step S2, generate a random number with a predetermined
bit length;

Specifically, in the present embodiment, the predetermined
bit length is 1024. In addition, the other bit length can also be
applied.

10

15

20

25

30

35

40

45

50

55

60

65

4

Preferably, in Embodiment 1, Step S2 further includes

if the least significant bit (or called the last significant bit)
of the generated random number is not 1, set the lowest
bit be 1; if the most significant bit of the generated
random number is not 1, set the most significant bit to be
1; while, if the second significant bit of the random
number is not 1, set the second significant bit to be 1. In
this way, it assures that the random number is big enough
and is not an even.

Sequences of Step S1 and Step S2 can be reversed.

Step S3, process the identifier group according to the ran-
dom number and a predetermined small prime number table.

Specifically, in Embodiment 1, the small prime number
table contains all small prime numbers between 3 to 255,
which includes 3 and 255,e.g.3,5,7, 11, ..., etc. In addition,
the other prime number tables can be used as well.

Specifically, Step S3 includes performing following steps
on each prime number in the small prime table.

Step S3-1, take a current small prime as modulus and
perform modulo operation on the random number to obtain a
modulus value;

If the current prime number is n, the category of the modu-

lus value ranged from 0, 1, . . ., to n—-1. Specifically, if the
current prime number is 13, the category of the modulus value
ranges from 0, 1, ..., t0 12.

If the result of modulus operation is not in the above cat-
egory, the result plus or minus the integer times of the current
small prime number, which makes the result to be in the
category.

Step S3-2, compute the identifier numbers to be reset in
respective units according to the modulus value;

Specifically, Step S3-2 includes

(1) dividing the identifier group in a plurality units accord-

ing to the current prime number and numbering the
identifiers in the units orderly as 0, 1, . . . , if the modulus
value is 0, numbering the identifier to be reset as 0;
otherwise, if the modulus value is an odd, numbering the
identifier to be reset as a result obtained by dividing
difference of the current prime number and the modulus
value by 2; otherwise, the modulus value is an odd, the
number of the identifier to be reset is a result of dividing
the difference of the current prime number and the
modulus value by 2;

For example, if the current prime number is 13, the iden-
tifier group is divided into 60 units (i.e. dividing 768 by 13 to
obtain a result and round number of the result then plus 1). In
this case, 59 units have 13 identifiers respectively; the last unit
has 1 identifier; if the modulus value is 5, the number of the
identifier to be reset is (13-5)/2=4; if the modulus value is 6,
the number of the identifier to be reset is 13-(6/2)=10.

Or

(2) if the modulus value is 0, the number of the identifier to

be reset is 0 and the integer times of the current prime
number; otherwise, if the modulus value is an odd; oth-
erwise, if the modulus value is an odd, the number of the
identifier to be reset is the result of dividing the differ-
ence of the current prime number and the modulus value
by 2 and the sum of'the result of the integrate number and
integer times of the current prime number; otherwise,
the modulus value is an odd; the number of the identifier
to be reset is the difference of the current prime number
and the result obtained by dividing the modulus value by
2; and the sum of the difference and the integer times of
the current prime number.

For example, if the current prime number is 13 and the
modulus value is 5, the number of the identifier to be reset is
(13-5)/2=4, or sum of 4 and the integer times of the current

US 9,419,793 B2

5

prime number 13; if the modulus value is 6, the number of the
identifier to be reset is 13—(6/2)=10, or sum of 4 and the
integer times of the current prime number 13.

Step S3-3, reset corresponding identifier in the identifier
group.

If there is no corresponding identifier of the number in the
identifier group, skip Step S3-3.

Step S4, generate a group of numbers to be tested accord-
ing to the random number and the identifier group and per-
form the primality test.

Specifically, check the identifier group orderly and per-
form following operation.

Step S4-1, if all of the identifiers are checked completely,
the process is ended; otherwise, check whether the current
identifier is reset. If yes, calculate sum of twice of the current
identifier number and the random number; the sum is the
current number to be tested and perform the primality test on
the current number to be tested; otherwise, the process is kept
on;
Step S4-2, set next identifier as the current identifier and go
back to Step S4-1.

Step S3-2 can be replaced with Step S3-2'; correspond-
ingly, Step S4-1 can be replaced with Step S4-1'; Specifically,
the Step S3-2' and Step S4-1' include the following:

Step S3-2', compute the identifier numbers to be reset in
respective units according to the modulus value.

(1) Dividing the identifier group into a plurality ofunits and
number the identifiers in the units orderly as 0, 1, . . ., if the
modulus value is 0, the identifier number to be reset is 0;
otherwise, the modulus value is an odd and the number of the
identifier to be reset is the obtained by dividing the sum of the
current prime number and the modulus value by 2; otherwise,
the modulus value is an even and the number of the identifier
to bereset is the result obtained by dividing the modulus value
by 2.

For example, if the current prime number is 13, the iden-
tifier group is divided into 60 units (dividing 768 by 13 to
obtain a result and round number of the result and then plus 1),
in which 59 units have 13 identifiers respectively and the last
unit has 1 identifier; if the modulus value is 5, the number of
the identifier to be reset is (13+5)/2=9; if the modulus value is
6, the number of the identifier to be reset is 6/2=3;

(2) if the modulus value is 0, the number of the identifier to
be reset is O or integer times of the current prime number;
otherwise, the modulus value is an odd, the number of the
identifier to be reset is the result of dividing sum ofthe current
prime number and the modulus value by 2 or sum of the result
and the integer times of the current prime number; otherwise,
the modulus value is an even, the number of the identifier to be
reset is the result obtained by dividing the modulus value by
2 or sum of the result and integer times of the current prime
number;

For example, if the current prime number is 13 and the
modulus value is 5, the number of the identifier to be reset is
(13+5)/2=9 or sum of 9 and integer times of the current prime
number 13; if the modulus value is 6, the number of the
identifier to be reset is 6/2=3 or sum of 3 and integer times of
the current prime number 13.

Step S4-1', if all of the identifiers are checked completely,
the process is ended; otherwise, check whether the current
identifier is reset. If yes, calculate difference of the random
number and twice of the current identifier number, the differ-
ence is a current number to be tested and perform the primal-
ity test on the current number to be tested; otherwise, the
process is kept on.

EMBODIMENT 2

Referring to FIG. 2, in order to improve the probability of
the passing the primality test and thus improving the effi-

10

15

20

25

30

35

40

45

50

55

60

65

6

ciency of generating a large prime number. Embodiment 2
provides a method for generating a large prime number in an
embedded system on the basis of Embodiment 1. Specifically,
the method includes following steps.

Step 101, a computer sets value of each data unit in a first
storage area to be effective value;

Preferably, in Embodiment 2, the size of the first storage
area is 768 bits, of which each 1 bit is a data unit, correspond-
ing to 768 random number identifier; specifically, sequence
numbers of respective data units are recorded as 0, 1, . . ., 766,
767,

Preferably, in Embodiment 2, the effective value is 1.

Step 102, the computer generates a random number with
preset length and stores the random number in a third storage
area and sets the least significant bit (or called the last signifi-
cant bit) of the random number to be 1 if the least significant
bit of the random number is not 1;

In Embodiment 2, in order to assure that the generated
random number is big enough, both the most significant bit
(or called the first significant bit) and the second significant
bit are set to be 1; other settings can be set on the random
number for the convenient of generation of a prime number;
no further detail is given here;

Preferably, in the Embodiment 2, the preset bit length is 64
bit, i.e. arandom number with 512 bit and the random number
is recorded as p; correspondingly, in Step 101, respective data
units can be identifiers of the random numbers p+2*m (m=0,
1,2,...,766,767); m is sequence number value of the data
unit in the storage space.

Step 103, the computer takes the current data in the second
storage area as amodulus and performs modulus operation on
data in the third storage area to obtain a current modulo value
and stores the current modulo value in a fourth storage area.
When the data stored in the fourth storage area is 0, go to Step
106; if the data in the fourth storage area is an odd, go to Step
104; if the data in the fourth storage is a non-zero even, go to
Step 105;

Preferably, in Embodiment 2, the second storage area
includes all small prime numbers between 3 to 255, each
small prime number occupies one storage unit; the storage
unit can be a plurality of bits or a plurality of bytes.

Specifically, in Embodiment 2, Step 103 is performed for
the first time, the current data is the data in the first storage
unit in the second storage area.

Step 104, the computer computes the difference of the
current data in the second storage area and the data of the
fourth storage area and dividing the difference by 2 to get a
result, replaces the data in the fourth storage area with the
result and performs Step 106;

Step 105, the computer computes the difference of the
current data in the second storage area and the result obtained
by dividing the data in the fourth storage area by 2 and replace
the data in the fourth storage area with the difference;

Step 106, set the value of the data unit with valid value in
the corresponding data unit of the first storage area to be
invalid;

Specifically, in Embodiment 2, if the values in the corre-
sponding units are invalid, go to Step 107,

Preferably, in Embodiment 2, corresponding data unit spe-
cifically includes the data unit of which the sequence number
value is the current modulus value (or called modulized
value), the data unit of which the sequence number value is
the sum of the current modulus value and the integer times of
the current data in the second storage area; the invalid value is
0.

US 9,419,793 B2

7

Step 107, the computer determines whether a next data unit
exists in the second storage value, if yes, take the data in the
next data unit as current data and go back to Step 103; other-
wise, go to Step 108;

Step 108, the computer determines whether the value of the
current data unit in the first storage area is valid, if yes, go to
Step 109; otherwise, go to Step 112;

Specifically, in Embodiment 2, when Step 108 is per-
formed for the first time, the current data unit is the data unit
of which the sequence number value is 0 in the first storage
area.

Step 109, the computer computes sum of the 2 times of the
sequence number value of the current data unit and the data in
the third storage area and performs the primality test on the
sum;

Step 110, the computer determines whether the sum passes
the primality test on the sum, if yes, go to Step 111; otherwise,
go to Step 112; p Step 111, the computer outputs the sum as
the large prime number and the process is ended;

Step 112, determine whether a next data unit exists in the
first storage unit, if yes, take the next data unit as the current
data unit and go back Step 108; otherwise, go to Step 102.

In Embodiment 2, Step 101 can be performed at any time
before Step 106.

EMBODIMENT 3

Referring to FIG. 3, Embodiment 3 provides a method for
generating a large prime number by a CPU; specifically, the
method includes following steps.

Step 201, the CPU sets a first data storage area with preset
size in memory area and sets each value of each data unit in
the first data storage area to be valid and stores number of the
data units in a second data storage area;

in which the data unit can be one bit, or one byte, or a

plurality of bits or a plurality of bytes. Preferably, in
Embodiment 3, the data unit is one bit; when the value of
the data unit is 1, it is regarded as valid; and when the
value of the data unit is 0, it is regarded as invalid;

For the convenience of the description, in Embodiment 3,
the sequence numbers of respective data units orderly are 0, 1,
2,....

Step 202, the CPU initializes a first variable i in a first
variable storage area;

Specifically, in Embodiment 3, the CPU initializes the first
variable i to be 1.

Step 203, the CPU takes the ith data in a fourth data storage
area as modulus and performs modulus operation on the data
in the third data storage area to obtain a current modulus value
and stores the current modulus value in a fourth variable
storage area,

The third data storage area stores a random number with
predetermined bit length generated by a random number gen-
erator; preferably, in Embodiment 3, the random number
generator generates a random number of 512 bits.

The fourth data storage area stores a group of prime num-
bers and the number of the prime numbers are stored in the
fifth data storage area; preferably, in Embodiment 3, the
fourth storage area stores all small prime numbers between 3
to 255;

Step 204, the CPU detects the data in the fourth variable
storage area; and

Step 205, the CPU initiates a second variablej in the second
variable storage area.

10

—

5

20

25

30

35

40

45

50

55

60

65

8

Specifically, in Embodiment 3,

when the data in the fourth variable storage area is 0, the
CPU initializes the value of the second variable j to be
the data of the fourth storage area;

when the data in the fourth variable storage area is an odd,

the CPU initializes the second variable j to be a value
obtained by dividing the difference of the data in the
third variable storage area and the ith data in the fourth
data storage area by 2; and

when the data in the fourth variable storage area is non-zero

even, the CPU initializes the second variable j to be a
result obtained by dividing the difference of the ith data
in the fourth data storage area and the data in the third
variable storage area by 2.

Step 206, the CPU checks whether the value of the jth data
unitinthe first data storage area is valid, if yes, go to Step 207,
otherwise, go to Step 208;

Step 207, the CPU sets the value of the jth data unit in the
first data storage area to be invalid;

Step 208, the CPU updates the second variable j in the
second variable storage area;

Specifically, in Embodiment 3, updating the second vari-
ablej in the second variable storage area specifically includes
updating the value of the second variable j to be the sum of the
second variable value j and the ith data in the fourth data
storage area.

Step 209, the CPU determines whether the value of the
second variable j in the second variable storage area is more
than the data in the second data storage area, if yes, go to Step
210; otherwise, go back to Step 206;

Step 210, the CPU updates the value of the first variableiin
the first variable storage area;

Specifically, in Embodiment 3, updating the first variable i
in the first variable storage area specifically includes updating
the value of the first variable i to be the value of the first
variable i and then plus 1.

Step 211, the CPU determines whether the value of the first
variable i in the first variable storage area is more than the data
in the fifth data storage area, if yes, go to Step 212; otherwise,
go back to Step 203;

Step 212, the CPU initializes the third variable k in the third
variable storage area;

Specifically, in Embodiment 3, the CPU initializes the third
variable k to be 0.

Step 213, the CPU determines whether the value of the kth
data unit in the first data storage area is valid, if yes, go to Step
216; otherwise, go to Step 214;

Step 214, the CPU updates the value of the third variable k
in the third variable storage area;

Specifically, in Embodiment 3, updating the third variable
kin the third variable storage area includes updating the value
of the third variable k to be the value of result of the third
variable k plus 1.

Step 215, the CPU determines whether the value of the
third variable k in the third variable storage area is more than
the data in the second data storage area, if yes, update the data
in the third data storage area and go back to the Step 202;
otherwise, go back to Step 213;

Step 216, the CPU computes the sum of the data in the third
data storage area and twice of the third variable k in the third
variable storage area and stores the sum in a fifth variable
storage area,

Step 217, the CPU determines whether the data in the fifth
variable storage area can pass the primality test, if yes, go to
Step 218; otherwise, go back to Step 214;

Step 218, the CPU outputs the data in the fifth variable
storage area.

US 9,419,793 B2

9

Steps in the description of the embodiment disclosed by the
present invention can be implemented by hardware, or soft-
ware module executed by a processor or combination of both
of the hardware and the software module. The software mod-
ule can be set in RAM, memory, ROM, electrically program-
mable ROM, EEPROM (electrically erasable programmable
read-only memory), register, hardware, mobile hardware,
removable disk, CD-ROM or any storage media in any other
form in the prior art.

Above description is only to illustrate the preferred
embodiments but not to limit the present invention. Any
modification and equivalent substitute made by those skilled
in the art in the scope of the technical solution of the present
disclosure should fall into the protection scope of the present
disclosure. The scope of protection is defined in claims of the
present invention.

The invention claimed is:

1. An encryption process, the encryption process uses a
large prime number as a key parameter, the large prime num-
ber is generated in an embedded system, the embedded sys-
tem comprising a first storage area and a second storage area,
wherein the first storage area stores an identifier group with a
predetermined size, sequence numbers of the identifiers in the
identifier group are consecutive integers including 0, and
different identifiers have different sequence numbers, and the
second storage area comprises a plurality of storage units, and
the different storage units store different prime numbers,

the method of generating the large prime number in the

embedded system comprising steps of:

1) resetting all identifiers in the identifier group stored in

the first storage area;
using a random number generator to generate a random
number with a predetermined bit length, and storing the
random number in a third storage area, taking the data of
the storage unit in the second storage area as modulus to
perform modulus operation on the data stored in the
third storage area to obtain a modulus value; according
to the modulus value and the data stored in the storage
unit corresponding to the modulus value, determining a
sequence number of the identifier which requires to be
reset in the identifier group, and resetting the identifier
corresponding to the sequence number;
2) determining whether a reset identifier exists in the iden-
tifier group, if'yes, go to Step 3); if no, go back to Step 1);

3) determining a number to be tested according to the
random number and the sequence number of the reset
identifier in the identifier group, and performing a pri-
mality test on the number to be tested; if the numberto be
tested passes the primality test, outputting the number to
betested as a large prime number; while if numbers to be
tested corresponding to all the reset identifiers in the
identifier group do not pass the primality test, go back to
Step 1); and

using the large prime number in the encryption process.

2. The process of claim 1, wherein, according to the modu-
lus value and the data stored in the storage unit corresponding
to the modulus value, determining the sequence number of
the identifier which requires to be reset in the identifier group
specifically comprises

when the modulus value is 0, taking a sum of the modulus

value and integer times of data stored in the storage unit
corresponding to the modulus value as the sequence
number of the identifier to be reset;

10

20

25

30

35

40

45

50

55

60

10

when the modulus value is an odd, obtaining difference of
the data stored in the storage unit corresponding to the
modulus value and the modulus value, obtaining a result
by dividing the difference by 2 and taking the result as
the sequence number of the identifier to be reset; and

when the modulus value is a non-zero even, obtaining a

quotient by dividing the current modulus value by 2, and
taking the difference of the current prime number and
the quotient as the sequence number of the identifier to
be reset; and

determining a number to be tested according to the random

number and the sequence number of the reset identifier
in the identifier group specifically comprises

taking a result of a sum of twice of the sequence number of

the reset identifier and the random number as the number
to be tested.
3. The process of claim 1, wherein according to the modu-
lus value and the data stored in the storage unit corresponding
to the modulus value, determining the sequence number of
the identifier which requires to be reset in the identifier group
specifically comprises
when the modulus value is 0, taking a sum of the modulus
value and integer times of the data stored in the storage
unit corresponding to the modulus value as the sequence
number of the identifier which requires to be reset;

when the modulus value is an odd, obtaining a sum of the
data stored in the storage unit corresponding to the
modulus value and the modulus value, obtaining a quo-
tient by dividing the difference by 2, and taking the
quotient as the sequence number of the identifier to be
reset; and
when the modulus value is a non-zero even, taking a quo-
tient of dividing the modulus value by 2 as the sequence
number of the identifier which requires to be reset; and

determining a number to be tested according to the random
number and the sequence number of the reset identifier
in the identifier group specifically comprises

taking difference of the random number and twice of the

sequence number of the identifier to be reset as the
number to be tested.

4. The process of claim 1, wherein generating the random
number with a predetermined bit length comprises

generating a binary number with the predetermined bit

length;

determining whether the least significant bit of the binary

number is 1, if the least significant bit of the binary
number is 1, taking the binary number as the random
number; while if the least significant bit of the binary
number is not 1, setting the least significant bit of the
binary number to be 1 and taking the binary number as
the random number.

5. The process of claim 1, wherein generating the random
number with a predetermined bit length comprises

generating a binary number with the predetermined bit

length;

determining whether the first significant bit of the binary

number is 1, if the first significant bit of the binary
number is 1, taking the binary number as the random
number; while if the most significant bit of the binary
number is not 1, setting the most significant bit of the
binary number to be 1 and taking the binary number as
the random number.

#* #* #* #* #*

